Halo Globular Cluster Formation within a Cosmological Context

Astronomy Department, University of Florida

10 April 2010, Gainesville: *Stars to Galaxies*
From cosmological ICs, the formation of the first stars are being simulated

- Start with cosmological initial conditions
- Go from ~ 1 Mpc comoving to \sim AU
- Capture fragmentation of primordial gas
- Model feedback, metal enrichment, second generation
- Expect pop III masses ~ 10-$100 M_\odot$ to a factor up to a few

Image from Turk et al. 2009. For discussion of these topics see, e.g., Bromm (2001), Glover (2005), O’Shea & Norman (2007), McKee & Tan (2008), Bromm et al. (2009), Jappsen et al. (2009), Wise & Abel (2009), Greif et al. (2010)
From cosmological ICs, the formation of the first stars are being simulated... but how do we know we are right?

- Start with cosmological initial conditions
- Go from ~ 1 Mpc comoving to \sim AU
- Capture fragmentation of primordial gas
- Model feedback, metal enrichment, second generation
- Expect pop III masses ~ 10-100 M_\odot to a factor up to a few

Image from Turk et al. 2009. For discussion of these topics see, e.g., Bromm (2001), Glover (2005), O'Shea & Norman (2007), McKee & Tan (2008), Bromm et al. (2009), Jappsen et al. (2009), Wise & Abel (2009), Greif et al. (2010)
From cosmological ICs, the formation of the first stars are being simulated... but how do we know we are right?

- Start with cosmological initial conditions
- Go from ~ 1 Mpc comoving to \sim AU
- Capture fragmentation of primordial gas
- Model feedback, metal enrichment, second generation
- Expect pop III masses ~ 10-$100 M_\odot$ to a factor up to a few

Image from Turk et al. 2009. For discussion of these topics see, e.g., Bromm (2001), Glover (2005), O’Shea & Norman (2007), McKee & Tan (2008), Bromm et al. (2009), Jappsen et al. (2009), Wise & Abel (2009), Greif et al. (2010)

What’s the right fossil?
Look for metallicity and dynamical signatures in something old.
Look for metallicity and dynamical signatures in something old.

- **Halo and Disk GCs**
 - Typical mass $\sim 2 \times 10^5 M_\odot$
 - Typical half-light $r \sim$ few pc
 - Disk clusters (red) have thick-disk-like kinematics
 - Halo clusters (blue) are on radial orbits, similar to halo stars

Figure 1

$V-I$ color histogram of globular clusters in the Virgo giant elliptical M87, showing clear bimodality (Larsen et al. 2001; figure from data courtesy of S. Larsen).

e.g., Brodie & Strader (2006)
Look for metallicity and dynamical signatures in something old.

- **Halo and Disk GCs**
 - Typical mass $\sim 2 \times 10^5 \, M_\odot$
 - Typical half-light $r \sim$ few pc
 - Disk clusters (red) have thick-disk-like kinematics
 - Halo clusters (blue) are on radial orbits, similar to halo stars
e.g., Brodie & Strader (2006)

- **GCs and Ages**
 - Red and blue median ages are separated by about 1.5 Gyr
 - Age spread in metal-poor halo GCs ~ 600 Myr, and consistent with a zero age spread
 - Halo GC ages 12-14 Gyr
de Angeli et al. (2005); Sarajedini et al. (2007)
Look for metallicity and dynamical signatures in something old.

- **Halo and Disk GCs**
 - Typical mass $\sim 2 \times 10^5 \text{ M}_\odot$
 - Typical half-light $r \sim \text{few pc}$
 - Disk clusters (red) have thick-disk-like kinematics
 - Halo clusters (blue) are on radial orbits, similar to halo stars

Figure 1

$V-I$ color histogram of globular clusters in the Virgo giant elliptical M87, showing clear bimodality (Larsen et al. 2001; figure from data courtesy of S. Larsen).

- **GCs and Ages**
 - Red and blue median ages are separated by about 1.5 Gyr
 - Age spread in metal-poor halo GCs ~ 600 Myr, and consistent with a zero age spread
 - Halo GC ages 12-14 Gyr

HGCs are old, but old enough?

d e Angeli et al. (2005); Sarajedini et al. (2007)
Radial biasing mass constraints

Where do high-σ peaks ($\nu_\sigma(M,z)$) end up?

Diemand et al. 2005, Moore et al. 2006
Radial biasing

Moore et al. (2006)
Do they share a history with halo stars?

Halo stars have: e.g., Helmi et al. (2008)

- similar metallicity distribution
- similar ages
- similar biasing

\[\text{Mass} \sim 2-8 \times 10^8 \, \text{M}_\odot \] (taking into account destruction, e.g., see Gnedin & Ostriker 1997)

Mass for HGC formation requires \(5 \times 10^8 \, \text{M}_\odot \), not just \(\text{few} \times 10^7 \, \text{M}_\odot \)

What is the earliest that this much mass can collapse?

Fall & Zhang 2001
Do they share a history with halo stars?

Halo stars have: e.g., Helmi et al. (2008)
- similar metallicity distribution
- similar ages
- similar biasing

- Mass $\sim 2-8 \times 10^8 \, M_\odot$ (taking into account destruction, e.g., see Gnedin & Ostriker 1997)
- Mass for HGC formation requires $5 \times 10^8 \, M_\odot$, not just few $\times 10^7 \, M_\odot$

Fall & Zhang 2001
Do they share a history with halo stars?

Halo stars have: e.g., Helmi et al. (2008)
- similar metallicity distribution
- similar ages
- similar biasing

Mass \(\sim 2-8 \times 10^8 \, M_\odot \) (taking into account destruction, e.g., see Gnedin & Ostriker 1997)

Mass for HGC formation requires \(5 \times 10^8 \, M_\odot \), not just \(\text{few} \times 10^7 \, M_\odot \)

What is the earliest that this much mass can collapse?

Fall & Zhang 2001
Collapsed mass and biasing
Using Press-Schechter theory with Sheth-Tormen formalism
Main Points:

- HGCs could not have formed exclusively in halos larger than $10^8 \, M_\odot$
Main Points:

- HGCs could not have formed exclusively in halos larger than 10^8 M_\odot.
- Only a few hundred Myr to form HGCs and halo stars before $z \sim 10$.
- Use HGCs to constrain early metal enrichment and the first stars.
Main Points:

- HGCs could not have formed exclusively in halos larger than $10^8 \, M_\odot$
- Only a few hundred Myr to form HGCs and halo stars before $z \sim 10$
- Use HGCs to constrain early metal enrichment and the first stars
- A 1 Mpc box run to $z \sim 10$ should resolve HGC formation
Main Points:

- HGCs could not have formed exclusively in halos larger than $10^8 \, M_\odot$
- Only a few hundred Myr to form HGCs and halo stars before $z \sim 10$
- Use HGCs to constrain early metal enrichment and the first stars
- A 1 Mpc box run to $z \sim 10$ should resolve HGC formation

Now for an example
I Leave You With A Metallicity Example

Top: Gas density with stars and metallicity distribution for a high feedback case. The snapshot is about 20 kpc proper across.
I Leave You With A Metallicity Example

Histograms of the mass within a given metallicity bin for each simulation. Left panel, little feedback. Right panel, a lot of feedback. In these examples, only supernovae feedback faeries. The binning for \([\text{Fe/H}] < -6\) is used for a different diagnostic, and does not represent pop II stars.
Summary

- A large fraction of halo stars could be formed with HGCs.
- Enough mass was collapsed in high-σ peaks to produce the halo and HGCs before $z \sim 10$.
- Small age dispersion of HGCs is naturally explained if formed at $z > 10$.
- Assuming 30 Mpc^3 comoving volume, $5 \times 10^8 \text{ M}_\odot$, and 200 Myr, $\sim 0.08 \text{ M}_\odot \text{ yr}^{-1} \text{ Mpc}^{-3}$ as an upper limit
- Simulation of a 1 Mpc comoving box must resolve HGC formation
 - If not, something is wrong with the model and/or the cosmology
- Constrain the feedback faeries
 - Metal distributions
 - Global SFE (should be $\sim 10\%$)
Appendix

- RAMSES
- Non-equilibrium chemistry: e, HI, HII, Hel, Hell, HelIII, H^-, H_2, H_2^+
- Used a population III star formation algorithm
 - Sample a Salpeter IMF, with high-mass, low-end cutoff
 - Switch to population II star formation if \(Z > 5 \times 10^{-7} Z_\odot \) (so they can form if they can)
- \(256^3 \) in ROI \(\rightarrow 1000 \, M_\odot \) DM particle mass
- Box size about 820 kpc comoving
Appendix: Chemistry check
Appendix: Subgrid fun (nonsense)

<table>
<thead>
<tr>
<th>Mass Range M_{\odot}</th>
<th>Outcome</th>
<th>t_{SN} (Myr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 8</td>
<td>M_{LL}</td>
<td>$-$</td>
</tr>
<tr>
<td>$8 < M < 25$</td>
<td>M_{LL}, M_{ejecta}</td>
<td>10</td>
</tr>
<tr>
<td>$25 < M < 35$</td>
<td>M_{BH}, M_{ejecta}</td>
<td>10</td>
</tr>
<tr>
<td>$35 < M < 140$</td>
<td>M_{BH}</td>
<td>$-$</td>
</tr>
<tr>
<td>$140 < M < 260$</td>
<td>M_{ejecta}</td>
<td>3</td>
</tr>
<tr>
<td>$260 < M$</td>
<td>M_{BH}</td>
<td>$-$</td>
</tr>
</tbody>
</table>

Table: The mass in long-lived stars and remnants, M_{LL}, black holes, M_{BH}, and ejecta mass M_{ejecta}. The remnant mass, either black hole or neutron star, is determined by $M_{R/BH} = \text{MAX}(M_{\text{star}} 0.1^{13.5M_{\odot}/M_{\text{star}}}, 1.35M_{\odot})$, which is based on the results of Timmes et al. (1996). The ejecta mass is the difference between star’s mass and its remnant. In the case of a pair-instability supernova ($140 < M < 260M_{\odot}$), the ejecta mass is set to the star’s mass. The third column, t_{SN}, is the supernova delay time.
Appendix: Comes with the following feedback fairies

- Only supernova feedback is included
- Population II star particles release 10% of the mass as ejecta, of which 1/10 is mass in metals
- Typical star particle is about 200 M_\odot. Can be more
- Star formation is regulated by feedback. High local efficiency leads to more stars at once, which leads to bigger collective boom
Appendix: An illustrative example

360 pc Density

90 pc Stars

Temperature

[Graphs showing density and temperature distributions, as well as a histogram of metallicity (Fe/H)]