Towards a Complete Census of Extreme Starbursts in the Early Universe

Caitlin M. Casey, University of Cambridge
(University of Hawai’i - September 2010)

Scott Chapman, Ian Smail, Rob Ivison, Andrew Blain, Roberto Neri, Frank Bertoldi, Linda Tacconi, Laura Hainline, Karin Menendez-Delmestre, Mark Swinbank, Kristen Coppin, Rob Beswick, Tom Muxlow, and others...

Stars and Galaxies Conference - 9 April 2010
Gainesville, FL, USA
1. Evolution of Ultra-luminous Galaxies
ULIRG evolution
(UltraLuminous InfraRed Galaxies)

1. Evolution of Ultra-luminous Galaxies

(Caitlin Casey - ccasey@ast.cam.ac.uk)
1. Evolution of Ultra-luminous Galaxies

BIG QUESTIONS:
- Volume Density?
- Progenitors?
- Details of triggering mechanism?

ULIRGs build stellar mass very quickly, big contribution to the Cosmic SFRD at \(z \sim 2 \).

e.g. Narayanan et al. 2009

SFR (M_\odot/yr)

<table>
<thead>
<tr>
<th>Time (Gyr)</th>
<th>SFR (M_\odot/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

Active ULIRG Phase
- \(T \sim 100\text{Myr} \)

Caitlin Casey - ccasey@ast.cam.ac.uk
Observing ULIRGs.

(at high-z)

1. Evolution of Ultra-luminous Galaxies

2. Far-IR Selection Effects
SubMillimeter Galaxies

$S_{850} \geq 5 \text{ mJy}$

SCUBA (JCMT) 850 μm
LABOCA (APEX) 870 μm

Radio ID Spec-z Subsample:
(~75 galaxies in multiple fields)

$\langle z \rangle \sim 2.2$

$SFR \geq 1000 \, M_\odot \, yr^{-1}$

$M \geq 10^{11} \, M_\odot$

Chapman et al. 2005, Pope et al. 2006

BUT...

BUT...

JCMT (SCUBA/SCUBA2)

2. Far-IR Selection Effects

Caitlin Casey - ccasey@ast.cam.ac.uk
2. Far-IR Selection Effects

SMGs are cold and don’t represent all ULIRGs at $z \sim 2$.

$z \sim 2 \rightarrow S_{850} \propto T_d^{-3.5} L_{FIR}$

...also radio-ID sample is biased towards $z < 4$.

2. Far-IR Selection Effects
Select at $70\,\mu m$: (8 Galaxies)

MIPS hot-dust ULIRGs
Casey et al. 2009b (MNRAS 399, 121)

\[T_d = 52 \pm 10 K \]

Select at $250\,\mu m$: (10 Galaxies)

BLAST warm-dust ULIRGs
Casey et al. 2010, in prep

\[T_d = 36 \pm 7 K \]

70um identification of submm-faint radio galaxies

Redshift identification

Caitlin Casey - ccasey@ast.cam.ac.uk
2. Far-IR Selection Effects

![Graph showing the selection effects in far-IR spectroscopy.](image-url)

- **250 µm** SOURCE
- **850 µm** DET, **250 µm** SOURCE
- Radio/850 inferred points
- 70 µm ULIRGs (C09)

70 µm

250 µm

Det limits for **250 µm**, **70 µm**, & **850 µm** at \(z = 1\) and \(z = 2\)

Caitlin Casey - ccasey@ast.cam.ac.uk
Seeking ULIRG completeness...

finding submm-faint ULIRGs, and characterizing their evolution.

2. Far-IR Selection Effects

3. Observations of submm-faint ULIRGs

Caitlin Casey - ccasey@ast.cam.ac.uk
3. Observations of submm-faint ULIRGs

Caitlin Casey - ccasey@ast.cam.ac.uk
ULIRG Completeness
Identification + Characterization

Since this is an 8 minute talk...

1. Select diverse ULIRG populations
 - 70um - MIPS, Casey et al. 2009b
 - 250um - BLAST, Ivison et al., Dunlop et al. 2010
 - 850/870um - SCUBA, LABOCA, All SMG papers...
 - 1.1mm - AzTEC, Younger et al. 2007,09a
 - 1.2mm - MAMBO, Younger et al. 2009b
 - CO - Neri et al. 2003, Greve et al. 2005, Tacconi et al. 2006,08, Casey et al. 2010a

II. Secure Redshifts
Optical/UV spec-z's (e.g. Keck, VLT)
Optical/UV *and* blank CO redshifts (ALMA)

III. Characterize ULIRG evolution
Molecular Gas Observations (PdBI), mid-IR spectra (IRS), rest-UV spectra, x-ray, resolved MERLIN radio

ALMA, JWST, eMERLIN, eVLA...

3. Observations of submm-faint ULIRGs

Caitlin Casey - ccasey@ast.cam.ac.uk
...Findings/Inklings.

Dearth of high-L ($\geq 10^{13} L_\odot$) hot-dust ULIRGs

Casey et al. 2010a (aph/0910.5756)
Casey et al. 2010, in prep

MAJOR MERGERS, ULIRGs at LAST INFALL STAGE?
HIGHEST SFRs in COLD, DIFFUSE ISM
$\tau \sim 100\text{Myr}$
$\sim 1000M_\odot\text{yr}^{-1}$

OBSERVATIONAL EVIDENCE NEEDED

Caitlin Casey - ccasey@ast.cam.ac.uk
OBSERVATIONAL EVIDENCE NEEDED

HERSCHEL, SCUBA2
- Select diverse range of z~2 ULIRGs
- Find z~4 ULIRGs

Herschel SPIRE image of Abell 2218

ALMA
- Blind CO redshifts
- CO Survey of large ULIRG samples
- CO in MW-type Gals at z~2
- CO excitation: gas, dust interaction
- Resolved CO dynamics

KECK, VLT...
- ID spec-z’s
- winds, outflows, metallicities

Caitlin Casey - ccasey@ast.cam.ac.uk
Summary

• STRONG TEMPERATURE BIAS OF SMGS
• Observations of hot-dust (and other submm-faint) ULIRGS:
 • FAR-IR observations in 50-500um (Herschel, SCUBA2)
 • Molecular Gas Observations (PdBI, ALMA)
 • AGN Diagnostics: Mid-IR PAH/continuum, X-ray, MERLIN
• Build sample, unify selection/characterization of ULIRGs
• Understand extreme, obscured SF at z~2

Email me! ccasey@ast.cam.ac.uk