The Effect of Ionizing Feedback on Turbulent Molecular Clouds

Matthias Gritschneder, KIAA, Peking University

in collaboration with:
Andreas Burkert (University Observatory Munich)
Thorsten Naab (MPA)
Stefanie Walch (Cardiff University)
Barbara Ercolano (University of Exeter)
Fabian Heitsch (University of North Carolina)
Markus Wetzstein (Princeton University)

Gainsville, April 2010
Star Formation in the Pillars in M16

• OMP-parallel tree/SPH-Code: iVINE: Ionization + VINE
• Following the radiation along a grid of line-of-sights (ray shooting)
• The size Δy of the rays is determined by the smoothing length close to the area of infall
• As soon as the ray size gets twice as large as the local smoothing length, the ray is refined.
Ionization of a Turbulent Cloud

- the radiation sweeps up hydrogen and triggers it into collapse

Turbulent box (Mach 5):

<table>
<thead>
<tr>
<th>Particles</th>
<th>T</th>
<th>(n_{\text{mean}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>>2 Mio</td>
<td>10 K</td>
<td>300 cm(^{-3})</td>
</tr>
</tbody>
</table>

Source of ionization:

\(F_0 = 5 \times 10^9 \) photons cm\(^{-2}\)

\(\rightarrow \) spatial resolution as high as 0.03 pc
\(\rightarrow \) with self-gravity (open boundaries)

\(\rightarrow \) \(M_{\text{part}} \sim 10^{-4} \) M\(_{\odot}\)
\(\rightarrow \) hydrodynamics: periodic boundaries
Driving Turbulence

\[v' = \rho^{1/2} v \]

\[10^2 \text{cm}^{-3} < \rho < 10^4 \text{cm}^{-3} \]

Conversion efficiency:

\[\sigma = \frac{e_{\text{turb}}}{e_{\text{Ly}}} \approx 2 \cdot 10^{-5} \]

Previous estimates:

\[\sigma \approx 2 \cdot 10^{-6} \]

(e.g. MacLow & Klessen, 2004)

See also Poster EP6 by Mohaddesseh Azimlu
Pillar and Core Formation

$M_{core} \sim 0.7 M_{\odot}$

$M_{pillarI} \sim 12 M_{\odot}$

$M_{pillarII} \sim 8 M_{\odot}$

$t = 550$ kyr
The Dancing Queen Trunk

Gahm et al. 2006, A&A, 454, 201:

[Diagram of data analysis]
A very likely formation mechanism
Parameter Study

- fiducial (M5, k=1..4)
- lower resolution
- boundary conditions
- warm gas
- low flux
- high flux
- low density
- k=4..8
- Mach 4
- Mach 7
- 2pc
- 8pc
The Formation of Pillars

10K vs 100K

\[\Rightarrow \rho_{\text{high}} T_{\text{cold}} \leq \rho_{\text{low}} 2T_{\text{hot}} \]
Mach Number

\[\log_{10} \Sigma \ [g/cm^2] \]

-5.6 -4.9 -4.2 -3.5 -2.8

0 kyr 0 kyr 0 kyr 0 kyr

T = 250 kyr T = 250 kyr T = 250 kyr T = 250 kyr

T = 500 kyr T = 500 kyr T = 500 kyr T = 500 kyr

Mach 2 Mach 5 Mach 7 Mach 12.5
Pillars and Globules

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Mach 5</th>
<th>Mach 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tip 1</td>
<td>Tip 2</td>
</tr>
<tr>
<td>$M [M_\odot]$</td>
<td>0.62</td>
<td>1.87</td>
</tr>
<tr>
<td>$v_0^T [\text{km/s}]$</td>
<td>0.60</td>
<td>1.08</td>
</tr>
<tr>
<td>$v_{500}^T [\text{km/s}]$</td>
<td>0.10</td>
<td>0.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Mach 7</th>
<th>Mach 12.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Globule 1</td>
<td>Globule 2</td>
</tr>
<tr>
<td>$M [M_\odot]$</td>
<td>0.32</td>
<td>0.15</td>
</tr>
<tr>
<td>$v_0^T [\text{km/s}]$</td>
<td>2.44</td>
<td>2.31</td>
</tr>
<tr>
<td>$v_{500}^T [\text{km/s}]$</td>
<td>3.00</td>
<td>2.85</td>
</tr>
</tbody>
</table>
Conclusions

• With standard MC parameters the formation of pillar-like substructures around HII regions is very likely

• Secondary star formation within these structures is frequently triggered

• The size, density and number of structures depends directly on the turbulent initial conditions