Distribution of Young Stellar Clusters in Nearby, Grand-Design Spirals

P. Grosbøl, ESO, Germany
H. Dottori, UFRGS, Brazil

Gainesville, April 6-10, 2010

Outline
1) Why use NIR
2) NIR properties of clusters
3) Sample of grand-design spirals
4) Examples: NGC 1232 & 5247
5) Distribution of clusters
K-band knots in NGC 2997

- Bright knots on K-band images
 - Seen in many grand-design spirals
 - Well aligned along spiral arms
 - Marginally resolved
 - Sizes of < 50 pc
 - Cluster complexes or HII regions
 - Often embedded in dust lanes
 - Not visible on blue images
- Small size and alignment suggest
 - Dynamical young objects
 - Associated to spiral arms
K-band spectra of knots

- Observation of K-band spectra
 - ISAAC/VLT low resolution
 - 6 knots in one slit (Grosbøl et al. 2006)
- Spectral features
 - Strong Brγ emission
 - Some HeI and H2 emission
 - Stellar continuum present
- Comparison with starbust99
 - Young stellar complexes
 - Ages <10Myr
 - Embedded in HII region
HAWK-I sample of grand-design spirals

Sample of nearby, grand-design spiral galaxies
- Deep JHK photometry with HAWK-I (0.1” pixel, 7' field)
- Reasonable sample only within ~20 Mpc
- Typical seeing around 0.5” → ~50pc linear scale
 - Similar to GMC's → sources are complexes of clusters
- Complete to Mk ~ -11^m → masses down to ~10^4 Mo

<table>
<thead>
<tr>
<th>Galaxy</th>
<th>Type</th>
<th>Distance Mpc</th>
<th>MBT mag</th>
<th>Scale pc/arcsec</th>
<th>S/N=5 K mag</th>
<th>Seeing arcsec</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 157</td>
<td>Sc(s)I-II</td>
<td>18.1</td>
<td>-20.6</td>
<td>88</td>
<td>26.4</td>
<td>0.4</td>
</tr>
<tr>
<td>NGC 1232</td>
<td>Sc(rs)I</td>
<td>19.8</td>
<td>-21.4</td>
<td>96</td>
<td>26.5</td>
<td>0.4</td>
</tr>
<tr>
<td>NGC 1300</td>
<td>SBb(s)I.2</td>
<td>19.6</td>
<td>-21.1</td>
<td>95</td>
<td>26.4</td>
<td>0.6</td>
</tr>
<tr>
<td>NGC 1365</td>
<td>SBb(s)I</td>
<td>21.1</td>
<td>-22.1</td>
<td>102</td>
<td>26.1</td>
<td>0.4</td>
</tr>
<tr>
<td>NGC 2997</td>
<td>Sc(s)I.3</td>
<td>19.7</td>
<td>-20.8</td>
<td>93</td>
<td>26.3</td>
<td>0.4</td>
</tr>
<tr>
<td>NGC 4321</td>
<td>Sc(s)I</td>
<td>26.0</td>
<td>-21.8</td>
<td>126</td>
<td>26.2</td>
<td>0.7</td>
</tr>
<tr>
<td>NGC 5247</td>
<td>Sc(s)I-II</td>
<td>22.5</td>
<td>-20.5</td>
<td>110</td>
<td>26.1</td>
<td>0.4</td>
</tr>
<tr>
<td>NGC 7424</td>
<td>Sc(s)II.3</td>
<td>9.5</td>
<td>-19.9</td>
<td>46</td>
<td>27.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>
NIR colours of sources

* (H-K)–(J-H) diagram
 - Bright knots in arms are stellar cluster complexes
 - K-band spectroscopy (Grosbøl et al. 2006)
 - Photometric errors ~0.1 m
 - Stars are along stellar main sequence
 - Starburst99 models (Leitherer et al. 1999)
 - Sources with Q=(H-K)-0.59*(J-H)>0.1 m → age <10 Myr
 - Dust attenuation A_v up to 10 m
Morphology of NGC 1232

- Central bar, smooth 2-armed pattern in inner parts
- Few inter-arm cluster in region with symmetric pattern
- Multiple arms in outer regions
- Similar to the Milky Way? (Becker 64)
Distribution in NGC 5247

Morphology of NGC 5247
- Strong, open 2-armed spiral
- Few inter-arm cluster in inner parts
- More even distribution in outer regions
- Spiral perturbation stronger and more peaked than in NGC 1232
Location relative to spiral pattern

- Clusters in region of inner, symmetric pattern
 - Massive stellar cluster concentrated in arm regions
 - Clusters are brighter in NGC 5247 than in NGC 1232

![Graphs showing clusters in different regions]
Number and magnitude distributions

- Flat distribution of number of cluster with radius
 - More older clusters in NGC 1232
- Young cluster peak at brighter Mk than older ones
 - Clusters in NGC 5247 are brighter than in NGC 1232
 - NGC 5247 has bright tail of young clusters
Radial Star Formation Rate

- **Estimate of radial SFR**
 - Clusters with 0.2 < Q corresponds to ages < 7 Myr
 - Mk at $-16^m \rightarrow 10^6$ Mo (upper mass limit of clusters uncertain)
 - Radial distribution
 - Region of main, symmetric spiral is not conspicuous
 - NGC 5247 has higher rate

- **Total SFR**
 - NGC 1232: 3.8 Mo/yr
 - NGC 5247: 6.1 Mo/yr
Conclusions

- NIR protometry is required to get complete sample of massive stellar clusters in grand-design spiral galaxies.
- In region of main, symmetric spiral pattern:
 - Massive clusters are concentrated in arm regions (young and old).
 - Suggests fast destruction of these clusters.
 - No time to recreate GMC between arm encounters.
- Outer regions have more even distribution.
- Relation to spiral perturbation:
 - Spiral concentrate SF in arms but does not enhance the SFR.
 - Strong perturbation may enable creation of brighter clusters.