Variations in the X-Factor within Molecular Clouds

Rahul Shetty1 Simon Glover1, Cornelius Dullemond2, Ralf Klessen1, & Mordecai Mac Low3

1Institut für Theoretische Astrophysik, Univ. of Heidelberg, 2Max Plank Institute für Astronomie, 3American Museum of Natural History

Introduction

Observations of galactic molecular clouds have suggested a linear relationship between the molecular column density N_{H_2} and CO intensity W_{CO}. The ratio of $N_{\text{H}_2} / W_{\text{CO}}$, known as the X factor, is thus assumed to be constant. Hydrodynamic simulations, including a treatment of molecule formation, by Glover et al. 2009 have found that H_2 is more effective than CO for self-shielding to prevent UV photodissociation. In order to investigate how the observationally derived X factors varies with molecular cloud properties, we apply radiative transfer calculations to these hydrodynamic simulations.

Results

Figure 1 shows the H_2 and CO column densities, along with the observed velocity integrated intensities, from a model molecular cloud with solar metallicity. The synthetic CO observation of the cloud was performed with the radiative transfer code RADMC (Dullemond et al. In prep.), using the Sobolev Large Velocity Gradient method to solve for the CO the level populations. As discussed by Glover et al. 2009 and Glover & Mac Low 2010, though there is generally good correlation between the CO and H_2 column densities, the low density regions show larger CO voids, or underdensities (e.g. region A). Additionally, due to projection effects, long continuous filaments in the observed CO map are segmented, shorter filaments in the H_2 or CO column densities (region B). Similarly, observed structures in the highest density regions do not clearly correspond to structures found in the H_2 or CO column densities (region C).

In high density regions, the X factor is found to vary by about only 1 order of magnitude, with values similar to those found from observations of Galactic GMCs, as shown in Fig. 2. Most of the X factor variations occur near the low density regions. However, in a simulation with low metallicity, the X factor varies by over 4 orders of magnitude (Figure 3). These variations occur throughout the cloud, suggesting that employing a constant X factor to analyze CO observations may lead to inaccurate cloud masses estimates.

Primary References

Glover, Federrath, Mac Low, & Klessen, 2010, MNRAS Accepted, arXiv 0907.4081