Habitable Earth-like planet surveys with next generation extremely high resolution and high Doppler precision optical and near IR spectrographs

Jian Ge, University of Florida

Team Members

Scott Powell, Bo Zhao, Frank Varosi, Sidney Schofield, Hali Jakeman, Derek Myers, Ji Wang, Adam Fletcher, Jian Liu, Dan Avnes, Rui Li, Liang Chang, John Groot, Xiaoke Wan, Jake Gittelmacher, Elliot Grafer, Kyle Owens, Alexandria Moore, Maria-Ines van Olphen, Jordan Katz, Matthew Muterspaugh, Rory Barnes & Cullen Blake

From Stars to Life, 4/5/2013
Discovery of a potential habitable planet around M dwarf, GL 581, with HARPS on ESO 3.6m (Mayor et al. 2009)
Discovery of a possible Habitable World Elsewhere with Kepler (Borucki et al. 2011)

- Kepler-22 (G5V, V=11.5, 180pc), Kepler-22b (P=289.9 days, 0.85 AU, 2.4R⊕)
- It may have ~10-30 Earth masses depending on its density, ~1 m/s RV amplitude
Kepler’s Planet Candidates
22 Months: May 2009 - Mar 2011

Radius Relative to Earth

Orbital Period in days

1 m/s detection limit

Chris Burke: 216.02
Occurrence of Planets

Fressin et al. 2013, AAS

FRACTION OF STARS WITH AT LEAST ONE PLANET

PLANET SIZE (relative to Earth)
Habitable Zones among K & M Dwarfs and Doppler Sensitivities

- RV precision $\leq \sim 1$ m/s required to probe habitable super-Earths around K0V-M4V dwarfs
- RV precision $\leq \sim 3$ m/s required to detect habitable super-Earths around M4V-M9V dwarfs

Barnes 2012
RV Uncertainties Limited by Photons with R=120K at Different Bands

- High precision and high resolution optical spectrographs are needed for habitable planet surveys around K0-M4V dwarfs
- High precision and high resolution near IR spectrographs are needed for habitable planet surveys around M4V-M9V dwarfs

Wang & Ge 2012
EXPERT-III for Extremely High Precision RV Measurements at the KPNO 2.1m Telescope

Thermal enclosure, vacuum chamber and optical bench

- $R \approx 100,000$ & $50,000$ at 3800-9000Å
- an R4 echelle with 1-4 fiber image slicer to reach $R=100K$
- 6% total detection efficiency
- Vacuum operation (< 0.01 torr and high precision temperature control (~2 mK over one month)
- 0.4 m/s photon limiting precision in 15 min for a V=8 solar type star
- Total construction cost within $1M$

Major remaining tasks: Vacuum system refining, System optimization & Acceptance test
Lab First light R=100K Sky Spectrum Taken with EXPERT-III

- Order 161, 0.38 μm
- Order 68, 0.90 μm

ThAr emission spectrum

2x2 40 μm fiber bundle
Lab First Light R=50K Sky Spectrum

Order 161, 0.38 μm

Order 68, 0.90 μm
Reduced R=100K Solar Spectrum with EXPERT-III

Solar Spectrum Taken with EXPERT-III

Simulated Solar Spectrum

R=120,000

R=100,000
• RMS with 30 spectral orders combined ~ 5m/s, consistent with prediction
• Next test: vacuum with the R=100K mode to reach sub m/s calibration precision
Target Information for EXPERT-III Rocky Planet Survey at the KPNO 2.1m Telescope

274 M4-K0V V<8.5 Dwarfs in 2013-2017

T_{eff} Distribution of Selected Survey Targets
EXPERT-III Doppler and Survey Sensitivity

Survey Sensitivity for low mass habitable planets (24 RV points)

Photon limited Doppler Precision at S/N =100 at 5500 Å

Pessimistic Performance

Predicted overall RV measurement errors

Baseline performance

<table>
<thead>
<tr>
<th>Number of planets</th>
<th>Superearths (<10 M⊕)</th>
<th>Intermediate mass planets (10 M⊕-100M⊕)</th>
<th>Giant planets (>100M⊕)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>17</td>
<td>22</td>
<td>9</td>
</tr>
<tr>
<td>Pessimistic</td>
<td>9</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>
FIRST IR Doppler Instrument Development

FIRST Chamber and Optical Bench

- **R=68K at 1.4-1.8 \(\mu \)m and R=56K at 0.8-1.35 \(\mu \)m, overall detection efficiency \(~7\%\)**
- **Operated in a vacuum chamber (<0.01 torr for 1 month) at 193K for the bench and 77K for a H2RG array and temperature controlled to within \(~4\) mK over a month**
- **A silicon immersion grating (1.4-1.8 \(\mu \)m) and a R4 echelle (0.8-1.35 \(\mu \)m) with a mirror image slicer**
- **Compact design (0.5x1.0x0.4m dimension) to keep the total cost within $1.5M**
FIRST Spectral Format and Engineering Data in November 2012

Image quality and throughput meet requirements

Remaining major tasks before commissioning this summer:
• Install the image slicer
• Integrate the H2RG with the instrument
• Cryogenic cooling and vacuum testing
• Acceptance test
FIRST Cryo-cooling Test in March 2013

- Ready for the first system testing
FIRST Low Mass Planet Survey Target Information

215 M2-M9 J<10 Dwarfs in 2013-2017

T_{eff} Distribution of Selected Survey Targets
FIRST at Fairborn Observatory to Hunt for Habitable super-Earths around 215 J<10 Late M Dwarfs in 2013-2017

Simulated Doppler Precision

Baseline with 30 min exposures
Pessimistic case w 30 min exposures

HARPS M dwarf sensitivity (Bonfils et al. 2011)

FIRST Exploration Space
(24 RV points)

- High cadence and queue schedule with the AST 2m robotic telescope offers the great flexibility for hunting for super-Earths
- Expect to detect ~30 exoplanets, including 10 super-Earths, within 100 day periods
Summary

• EXPERT-III has been assembled in the lab and is being tested and refined
• EXPERT-III will be commissioned at the KPNO 2.1m in June 2013
• EXPERT-III will be used for three key projects: Habitable super-Earth searches around early M and K dwarfs, SDSS-III MARVELS planet and brown dwarf candidate follow-ups and Kepler candidate follow-ups

• FIRST has been integrated in the lab and engineering data shows its optical performance meets requirements
• FIRST vacuum and thermal performance is being tested
• FIRST will be commissioned in June 2013, a pilot survey will be launched in fall 2013 and a full survey of ~200 nearby M dwarfs for habitable super-Earths will be carried out in 2014-2017

• Both FIRST and EXPERT-III are optimized for high spectral resolution, broad wavelength coverage and high throughput, but low cost (~$1M)

Acknowledgement: FIRST and EXPERT-III construction and technologies have been supported by DoD, Dharma Endowment Foundation, NASA, NSF, UCF-UF SRI and Univ. of Florida