Outflows in massive star formation: from the magnetic to the radiative outflow

Benoît Commerçon
Centre de Recherche Astrophysique de Lyon
Matthias González (AIM Saclay)
Neil Vaytet (NBI Copenhagen), Jacques Masson (CRAL Lyon)
Formation of massive stars in magnetised cores

✓ Focus on isolated massive core, threaded by regular magnetic fields
✓ Interplay between magnetic braking and radiative feedback reduces efficiently fragmentation (Commerçon et al. 2011, Myers et al. 2013)
✓ Choice of slowly rotating cores to focus on the star-disk-outflow system formation, without strong fragmentation

Commerçon et al. 2011
✓ Adaptive-mesh-refinement code RAMSES (Teyssier 2002)
✓ Multifrequency Radiation-HD solver using the Flux Limited Diffusion approximation (Commerçon et al. 2011, 2014, González et al. 2015). In this work, just grey
✓ Sink particles using clump finder algorithm (Bleuler & Teyssier 2014)

Gravitational
Radiative
Lorentz force

Ambipolar EMF

\[
E_{AD} = \frac{1}{\gamma_{AD}\rho_i\rho} \left[(\nabla \times B) \times B \right] \times B
\]
Initial conditions and stellar evolution

✓ 100 M⊙; ρ ∝ R⁻² (ρ_c=2x10⁶ cm⁻³); T = 20 K ; R₀ = 0.2 pc
✓ Solid body rotation Ω=3x10⁻¹⁵ Hz (r_d~650 AU)
✓ Uniform magnetic field (μ_uni=2,5,∞) (B=170, 68, 0 μG), aligned with rotation axis (x-axis)
✓ at least 10 cells/Jeans length

✓ Sink particles : ρ_thre=10¹⁰ cm⁻³ , r_sink=~20 AU (4Δx_min)
✓ Protostellar feedback sources associated to the sink:
 ★ internal luminosity given by Hosokawa et al. tracks (R. Kuiper), L_acc=0
 ★ all the accreted mass goes in stellar content (most favorable case)
 ★ NO sub-grid model for outflow

✓ 4 models: Hydro, IMHD μ=2, ambipolar diffusion μ=2 and μ=5
Hydro collapse

- Formation of a large disk: R~1000 AU
- Binary system: 24 and 13 M⊙
- Radiative outflow/bubble (1500 AU)
iMHD collapse, $\mu = 2$

$M_* = 0.5 \, M_\odot$
Hydro & iMHD: origin of the outflow

- Outflow has a radiative origin
- Magnetic fields disorganised by magnetic flux expulsion (interchange instability, e.g., Masson et al. 2016)
Ambipolar diffusion, $\mu = 2$

$M_* = 0.1 \, M_\odot$
Ambipolar diffusion, $\mu = 5$

$M_* = 0.2 \, M_\odot$
Outflow morphology

AMBI $\mu = 2$

AMBI $\mu = 5$

HYDRO
Outflow collimation

- Outflow collimated by toroidal B-field
- Outflow extends up to 50,000 AU when $M_* = 12M_\odot$, $V_{out,max} = 40$ km/s
- Outflow is strongly magnetized

AMBI $\mu = 2$

AMBI $\mu = 5$

AMBI $\mu = 5$
Is radiative feedback important?

✓ radiative force contributes to the outflow, but does not dominate over the Lorentz force.
Discs properties

HYDRO

IMHD $\mu=2$

AMBI $\mu=5$

AMBI $\mu=2$
Discs properties

- Discs are dominated by thermal pressure with AD (i.e. hydro discs)
- Thick and magnetised disk with iMHD
Magnetisation

✓ Bmax reduced by > 1 order of magnitude by AD
✓ plateau @ B<1G
✓ similar to results found in low mass star formation

Masson et al 2016
Conclusion

- Outflow is primarily of magnetic origin
- Magnetic outflow extends up to 50,000 AU
- Radiative force does not overtake with $M_\star < 15 M_\odot$, but contributes to acceleration
- No large disk - $R < 500$ AU
- Observational diagnostics
- Ideal MHD and hydro models have strong limitations wrt
 1. outflow launching
 2. disk properties (as well as for low-mass star formation…)
 3. angular momentum transport

➡️ To do

✓ parameter study, turbulence