Astrochemistry in high-mass Star-Forming regions

THANKS TO: Paola Caselli (MPE)
Cecilia Ceccarelli (IPAG)
.......Francesco Palla (INAF-Arcetri)
Low-mass star formation

1- PRE- STELLAR PHASE: SIMPLE MOLECULES

2- PROTOSTELLAR PHASE: COMPLEX MOLECULES

3- PROPLYDS PHASE: SIMPLE + COMPLEX

4- PLANETS FORMATION CONSERVATION + DELIVERY: LIFE (?)

chemical sequence!

Shu, Adams & Lizano 1987
Caselli & Ceccarelli 2012
High-mass star formation

Tentative evolutionary sequence

![Diagram of star formation stages](image)

- IRDC
- HMPO
- HMC
- UCH II

\[T \sim 10 - 20 \text{ K} \quad T \sim 20 - 100 \text{ K} \quad T \geq 100 \text{ K} \]

- Huge distances (d>1 kpc)
- Rare objects
- Strong feedback
- Variations in a shorter time

chemical sequence?
Presentation outline

1. Main (astro)chemical processes in Star-Forming regions
2. Chemistry of InfraRed-Dark Clouds
3. Chemistry of High-Mass Protostellar Objects, and Hot Molecular Cores
4. Isotopic ratios: are they evolutionary indicators?
Gas-phase processes

Neutral-neutral: \(A + BC \rightarrow AB + C \)

Minimum energy to brake bonds: \(E \sim 0.01-1 \text{ eV} \)

Energy released by the formation of the new bond:

\[k_b T \sim 0.01 \text{ eV} \quad @ \quad 100 \text{ K} \]

in cold molecular clouds cannot overtake the Barrier...

Dominant in warm (\(T > 100 \text{ K} \)) gas

e.g. Duley & Williams 1984, “Interstellar chemistry”
Van der Tak 2005
Gas-phase processes

Ion-neutral: $A^+ + BC \rightarrow AB^+ + C$

Exothermic ion-molecule reactions can occur even in very cold $(T<90 \text{ K})$ gas because the ACTIVATION BARRIER is OVERTAKEN by the energy of the long-range attractive interaction between the ion and the dipole moment induced in the neutral particle.

$V(R) = -\alpha e^2/2R^4$

Dominant in cold $(T < 100 \text{ K})$ gas

e.g. Herbst & Klemperer 1973; Anicich & Huntress 1986
Grain-surface processes

(1) A particle that impacts on a dust grain can be adsorbed (i.e. it remains on the surface) if the temperature is low ($T \leq 30$ K): ACCRETION.

(2) If many particles are adsorbed, i.e. if the density is high ($n \geq 10^4$ cm$^{-3}$): SURFACE DIFFUSION → MOLECULE FORMATION

(3) When the temperature increases ($T > 30 - 90$ K) above the evaporation threshold: DESORPTION

e.g. Duley & Williams 1984, Caselli+1997, Herbst 2005
In this way one can form efficiently on cold surfaces:

\[
\begin{align*}
H & \rightarrow H_2 \\
O & \rightarrow OH \rightarrow H_2O \\
C & \rightarrow CH \rightarrow CH_2 \rightarrow CH_3 \rightarrow CH_4 \\
N & \rightarrow NH \rightarrow NH_2 \rightarrow NH_3 \\
CO & \rightarrow HCO \rightarrow H_2CO \rightarrow H_3CO \rightarrow CH_3OH
\end{align*}
\]

Chemistry of Infrared-dark clouds

• Extinction features against the bright mid-IR Galactic background
• detected ~15 years ago by ISO (then by MSX, Spitzer, and Herschel)
• Cold (T < 25 K); dense ($N_{H_2} > 10^{23} \text{ cm}^{-2}$); massive ($10^2 M_{\text{sun}} \leq M \leq 10^4 M_{\text{sun}}$)

Typical low-T high-n chemistry

1) dominant species: N_2H^+, HCO+, HCN, HNC, C_2H...
 Vasyunina+11, Sanhueza+12, Henshaw+13, Miettinen14

2) high CO depletion factors
 Pillai+07, Zhang+09, Hernandez+11, Fontani+12

3) high abundances of D-molecules
 (D/H $>> 10^{-5}$)
 Fontani+2011, Tan+2013, Pillai+2012,
 Kong+2015, Gerner+2015

\[N_2 + H_3^+ \rightarrow N_2H^+ + H_2 \]
\[CO + H_3^+ \rightarrow HCO^+ + H_2 \]
Chemistry of Infrared-dark clouds

- Extinction features against the bright mid-IR Galactic background
- detected ~15 years ago by ISO (then by MSX, Spitzer, and Herschel)
- Cold ($T < 25$ K); dense ($N_{H_2} > 10^{23}$ cm$^{-2}$); massive (10^2 $M_{\odot} \leq M \leq 10^4$ M_{\odot})

Typical low-T high-n chemistry

1) dominant species: N_2H^+, HCO$^+$, HCN, HNC, C$_2$H...
 - Vasyunina+11, Sanhueza+12, Henshaw+13, Miettinen+14

2) high CO depletion factors ($f_{CO}>5$-10)
 - Pillai+07, Zhang+09, Hernandez+11, Fontani+12

3) high abundances of D-molecules
 - ($D/H>>10^{-5}$)
Chemistry of Infrared-dark clouds

- Extinction features against the bright mid-IR Galactic background
- Detected ~15 years ago by ISO (then by MSX, Spitzer, and Herschel)
- Cold ($T < 25$ K); dense ($N_{H_2} > 10^{23}$ cm$^{-2}$); massive ($10^2 \, M_{\odot} \leq M \leq 10^4 \, M_{\odot}$)

Typical low-T high-n chemistry

1) Dominant species: N_2H^+, NH_3, HCO^+, HCN, HNC, SiO

 Vasyunina+11, Sanhueza+12, Henshaw+13, Miettinen14

2) High CO depletion factors ($f_{CO}>5-10$)

 Pillai+07, Zhang+09, Hernandez+11, Fontani+12

3) High abundances of D-molecules

 ($D/H>>10^{-5}$)

At a resolution of ~27`` (or ~0.4pc)

Mean deuterium fraction = 0.04
CO depletion and D-fractionation

If T is low

\[\text{H}_3^+ + \text{HD} \rightarrow \text{H}_2\text{D}^+ + \text{H}_2 + 230K \]

If $n(\text{H}_2)$ is high

\[\text{H}_2\text{D}^+ + \text{CO} \rightarrow \text{DCO}^+ \]

\[\text{H}_2\text{D}^+ + \text{N}_2 \rightarrow \text{N}_2\text{D}^+ \]

\[\text{H}_2\text{D}^+ + \text{CN} \rightarrow ... \rightarrow \text{DNC} \]

\[\text{H}_2\text{D}^+ + \text{NH}_3 \rightarrow ... \rightarrow \text{NH}_2\text{D} \]

\[\text{H}_2\text{D}^+ + \text{H}_2\text{CO} \rightarrow ... \rightarrow \text{HDCO} \]

$D_{\text{frac}} = \frac{N(\text{XD})}{N(\text{XH})} >> 10^{-5}$

(e.g. Crapsi et al. 2005, Emprechtinger et al. 2009, Gerner et al. 2015)

If $T < 20$ K

\[n(\text{H}_2) > 10^5 \text{ cm}^{-3} \]

High CO (and CS) DEPLETION FACTOR

\[f_D = \frac{X(\text{CO})^T}{X(\text{CO})^O} > 1 \]

(e.g. Caselli et al. 1999, 2002, Tafalla et al. 2004)
Chemistry of H-M Protostellar Objects

- Accreting protostars with $M \geq 8 \, M_{\text{sun}}$, mid-Infrared-luminous;
- Warm ($T \sim 20 - 100 \, K$); associated with powerful outflows

Intermediate-T high-n chemistry

1) Dominant species: CO, ^{13}CO, N_2H^+, HCO$^+$, H$^{13}\text{CO}^+$
 + saturated Molecules: CH$_3$CCH, CH$_3$OH, H$_2$O
 Beuther+07,+09, Herpin+12, Foster+11, Gerner+14

2) Lower CO dep. factors ($f_{\text{CO}} < 10$)
 ~high abundances of D-molecules
 Fontani+06,+11 Giannetti+14
 Miettinen+11, Gerner+2015

3) Outflow/shock tracers:
 CO wings, SiO, SO$_2$

Cyganowski et al. 2011
G19.01-0.03 (SMA + IRAC)
Chemistry of H-M Protostellar Objects

• Accreting protostars with $M \geq 8 M_{\text{sun}}$, mid-Infrared-luminous;
• Warm ($T \sim 20 - 100$ K); associated with powerful outflows

Intermediate-T high-n chemistry

1) Dominant species: CO, 13CO, N$_2$H$^+$, HCO$^+$, H13CO$^+$
 + saturated Molecules: CH$_3$CCH, CH$_3$OH, H$_2$O
 Beuther+07,+09, Herpin+12, Foster+11, Gerner+14

2) Lower CO dep. factors ($f_{\text{CO}} < 10$)
 ~high abundances of D-molecules
 Fontani+06,+11 Giannetti+14
 Miettinen+11, Gerner+2015

3) Outflow/shock tracers:
 CO wings, SiO, SO$_2$

Beuther et al. 2009
Chemistry of Hot Molecular Cores

- Molecular “cradles” of newly born OB stars
- Hot ($T > 100$ K); dense ($n_{H_2} > 10^{6-7}$ cm$^{-2}$); luminous ($L > 10^4$ L$_{\odot}$)
- Rich in complex molecules and saturated species

Typical high-T high-n chemistry

1) Dominant species: CH$_3$CN, OCS, Complex Organic Molecules
 + shock tracers: SiO, SO, SO$_2$
 Beuther+07,+09, Beltrán+07,+14
 Oberg+13, Sanchez-Monge+14

2) Low CO depletion factors
 ($f_{CO} \sim 1$)
 Low abundance of D-molecules
 Fontani+07,+11,+15, Miettinen+11, Gerner+2015

Beuther et al. 2009
Hot-core G31.41 with ALMA

COMPLEX ORGANIC MOLECULES

- **7 atoms**
 - Acetaldehyde = CH$_3$CHO
 - Vinyl Cyanide = C$_2$H$_3$CN
- **8 atoms**
 - Methyl formate = CH$_3$OCHO
 - Glycolaldehyde = CH$_2$(OH)CHO
- **9 atoms**
 - Dimethyl ether = CH$_3$OCH$_3$
 - Ethanol = C$_2$H$_5$OH
 - Ethyl cyanide = C$_2$H$_5$CN
- **10 atoms**
 - Ethylene glycol = (CH$_2$OH)$_2$
 - Acetone = CH$_3$COCH$_3$

Courtesy of m. Beltrán
D-molecules: evolutionary tracers?

\[
\frac{N_2H^+}{D}: \text{sharp decrease } \text{HMSC} \rightarrow \text{HMPO}
\]

\[
\frac{HNC}{D}: \text{slight decrease } \text{HMSC} \rightarrow \text{HMPO}
\]

\[
\frac{NH_3}{D}: \approx \text{constant}
\]

\[
\frac{CH_3OH}{D}: \text{increase (sharp?) } \text{HMSC} \rightarrow \text{HMPO}
\]

Dfrac(N_2H^+) is the best (unique?) tool to identify High-Mass starless cores!

GAS

GRAINS

D-\text{molecules: evolutionary tracers?}

\text{Dfrac}(N_2H^+): \text{sharp decrease } \text{HMSC} \rightarrow \text{HMPO}

\text{Dfrac}(HNC): \text{slight decrease } \text{HMSC} \rightarrow \text{HMPO}

\text{Dfrac}(NH_3): \approx \text{constant}

\text{Dfrac}(CH_3OH): \text{increase (sharp?) } \text{HMSC} \rightarrow \text{HMPO}

\text{Dfrac}(N_2H^+) \text{ is the best (unique?) tool to identify High-Mass starless cores!}

\text{Fontani+15}
Formation of 15N-molecules

e.g. Terzieva & Herbst 2000; Charnley & Rodgers 2002; Rodgers & Charnley 2008; Hily-Blant et al. 2013; Roueff et al. 2015

If T is low

15N + N$_2$H$^+$ \rightarrow 15NNH$^+$ + N + 36K

N15NH$^+$ + N + 28K

15N + HCNH$^+$ \rightarrow HC15NH$^+$ + N + 36K

![Chemical network showing the main reactions responsible for 15N enhancement in nitriles and ammonia.](image)

Figure 1. Chemical network showing the main reactions responsible for 15N enhancement in nitriles and ammonia.
^{15}N-molecules: evolutionary tracers?

Main results:

1) Huge range of $^{14}\text{N}/^{15}\text{N}$ in N_2H^+

2) NO statistical separation between the evolutionary groups

→ time does not seem to play a role in ^{15}N fractionation
NO statistical separation between HMSCs / HMPOs / UCHIIIs, But overall faint anti-correlation (similar to L1544!!):
Spearman’s $\rho \sim -0.5$
Kendall’s $\tau \sim -0.6$
Summary and (some) open questions

1) Chemical complexity increases as in low-mass Star Formation. But how (and when) are COMs forming?

2) D-fractionation is (overall) an evolutionary indicator. But what is the contribution of surface chemistry?

3) 15N-fractionation is still mysterious... is it dependent on core evolution?
H and N isotopic anomalies

Caselli & Ceccarelli 2012, A&Arv (and references therein)