Five Extragalactic Candidate η Carinae Analogs

Rubab Khan

JWST Fellow
NASA Goddard Space Flight Center

“From Stars to Massive Stars”, Gainesville, FL
April 9, 2016
Unknown

Cause?
One-off?
Evolution?

Binary merger?
Binary interaction?
Single star evolution?
HST image (Morse et. al. 1998)

Low optical, near-IR luminosity
HST image (Morse et al. 1998)

Low optical, near-IR luminosity

Rising in mid-IR

$\lambda_A(L_\odot)$

$\lambda(\mu m)$

Low optical, near-IR luminosity

η Car
HST image (Morse et. al. 1998)

Low optical, near-IR luminosity

Rising in mid-IR

Turn over: warm dust

Low optical, near-IR luminosity
First Search: 7 Galaxies, 1-4 Mpc

- NGC6822, M33, NGC300, M81, NGC2403, NGC247, NGC7793
- SFR = ~2 M$_{\odot}$/year
- No η Car analogs found
- Identified a class of dusty stars analogous to IRC+10420
- $L_{\text{bol}} = 10^{5.5-6.0} L_{\odot}$
- $M_{\text{ZAMS}} = \sim 25 - 60 M_{\odot}$

Khan et. al. (2011, 2013, 2015a)
4 Galaxies at 4-8 Mpc

- M51, M83, M101, NGC6946
- SFR = ~7 M☉ / year
- 20 ccSN in past century
- Identified 5 likely η Car analogs
- $L_{\text{bol}} = \sim 3 - 8 \times 10^6$ L☉
- 5-10 M☉ warm (400-600K) ejecta
5 Candidate η Car Analogs

- M51, M83, M101, NGC6946
- SFR = ~7 M_☉/year
- 20 ccSN in past century
- Identified 5 likely η Car analogs
- \(L_{\text{bol}} = \sim 3 - 8 \times 10^6 \) L_☉
- 5-10 M_☉ warm (400-600K) ejecta
5 Candidate η Car Analogs

- M51, M83, M101, NGC6946
- SFR = ~7 M☉ / year
- 20 ccSN in past century
- Identified 5 likely η Car analogs
- $L_{\text{bol}} = \sim 3 - 8 \times 10^6$ L☉
- 5-10 M☉ warm (400-600K) ejecta

Mathematical Equations:

$$M_e = 4\pi R_{\text{in}}^2 \tau_v \left(\kappa_{v100}^{-1}M_\odot\right)$$
Candidate >>> Real (?) Analogs

- Mimics photometric properties:
 - At least one very high mass star in each system
 - Obscured in many solar masses of close warm ejecta
 - Unlikely to be contaminants (QSO, cluster etc.)
Candidate >>> Real (?) Analogs

- But we don't know:
 - What is the stellar temperature? Hot or cool?
 - Post giant eruptions or continuous thick winds?
 - Single or binary?
What's next?

- HST UV and IR imaging
 - \(T_* \approx 50,000 \text{K} \) or \(\sim 7,500 \text{K} \)
 - Dust optical properties
- 'Ideal' targets for JWST
 - MIRI: Dust chemistry
 - NIRSpec: 'cool' star
- Fill the 'gap' (?)?
What's next?

- HST UV and IR imaging
 - $T_\ast \sim 50,000K$ or $\sim 7,500K$
 - Dust optical properties
- 'Ideal' targets for JWST
 - MIRI: Dust chemistry
 - NIRSpec: 'cool' star
- Fill the 'gap' (???)
SLSN-II Connection?

• Would η Car die as a Type II Superluminous Supernova?

• SLSN-II rate is expected to be $\sim0.1\%$ of the ccSN rate

• If η Car analogs are detectable for ~200 years, then …

• … the “η Car” rate may be $\sim10\%$ of the observed ccSN rate

• Two possible explanations:

 – One, 10^3-10^4 years long eruption mechanism, or

 – Two eruption mechanisms, most “η Car” not \Rightarrow SLSN
Summary

•Identified five extragalactic candidate analogs for the present day η Carinae

•Mimics observed properties, but physical properties and evolutionary states TBD

•Next: Follow up in the UV and IR, and expand search to more diverse host galaxies

(UGC 2773-OT, an extragalactic Great Eruption analog)