Accretion can be estimated from all spectral lines: HD 100546 as a test case

I. Mendigutíaa, R.D. Oudmaijerb, W.J. de Witc, E. Rigliacob, J.R. Fairlambb, N. Calvetc, A.C. Carciofib, J. Muzerollec, J.D. Illee, M.E. van den Anckerd, N. Cunninghamd, S.L. Lumsdend, R.G. Vieirad

aUniversity of Leeds, School of Physics & Astronomy, UK
bEuropean Southern Observatory, Chile, Germany
cSwiss Federal Institute of Technology, Department of Physics-Institute for Astronomy, Switzerland
dUniversity of Michigan, Department of Astronomy, USA
eUniversity of Cambridge, Institute of Astronomy, UK
fGreen Bank Observatory, USA

* i.mendigutia@leeds.ac.uk

1. THE EMPIRICAL CORRELATIONS

Measuring accretion in young stars surrounded by disks is crucial to understand their evolution. Correlations between the accretion luminosity (L_{acc}) and the luminosity of spectroscopic emission lines (L_{line}) were first found for T Tauri stars around two decades ago [1]. Since then, those have been improved including larger samples of stars and spectral transitions spanning from the near-UV to the near-IR. Recently, we have extended the correlations to the Herbig Ae/Be regime [2], [3], [4]. Two examples are given for the Hα (Fig. left) and Brγ (Fig. right) lines (T Tauri stars in red and Herbig Ae/Be stars in gray [5]). The L_{acc}-L_{line} correlations are useful to quickly derive accretion rates over wide samples of stars by measuring the luminosity of a given emission line. However, what is the origin of the correlations?

2. COULD THE CORRELATIONS RESULT FROM MAGNETOSPHERIC ACCRETION?

It is widely accepted that material from the inner disk of T Tauri stars and many Herbig Ae/Be stars fall on to the central object through magnetoacoustic accretion (MA). In this view, ionised gas in the inner disk is funneled through the stellar magnetic field lines at a few stellar radii, free falling until it shocks at the stellar surface (Fig. left, from [5]). MA is able to reproduce emission line profiles shown by young stars. An example is given in Fig. right [2], where we reproduced (dashed line) the observed Hα profile of the Herbig Ae/Be BF Ori (solid line). According with MA, the bulk of the emission lines is generated in the magnetosphere. Under this background, it is tempting to assume that the L_{acc}-L_{line} correlations result from a physical connection between the spectral lines and accretion.

3. OBSERVATIONAL TEST: RESOLVING HD 100546 WITH AMBER SPECTRO-INTERFEROMETRY

HD 100546 is a young star (- 7 Myr, [6]) with a complex circumstellar environment showing evidence of ongoing planet formation. A protoplanet is located in the outer disk at \sim 50 au [7], and a planet candidate could be located at \sim 12 au, in the gap that separates the outer region and the inner dust disk. These properties, along with its brightness and close distance (100 pc), make HD 100546 the perfect laboratory not only to test planet formation theories but also our knowledge of accretion in young stars. Our AMBER/VLTI results (Fig. in red) in terms of Brγ line fluxes, visibilities, and differential phases (Fig. left) are consistent with a line emitting region inside the dust inner rim (\sim 0.25 au, dashed line in Fig. right) with a Keplerian, disk-like structure rotating counter-clockwise, and probably flared (\sim 25\degree). The amount of gas detected needs to be replenished on time-scales of a few months to years, perhaps by planet-induced flows from the outer to the inner disc as has been reported for similar systems [8]. In addition, the Brγ emission indicates that HD 100546 is still accreting at $\sim 10^{-9} M_{\odot}/yr$ (see also [9]). However, despite the location of HD 100546 in the L_{acc}-L_{line} correlations is perfectly consistent with the rest of the stars, the bulk of the emission does not come from the magnetosphere (not-dashed line in the zoom-in of Fig. right), as assumed in MA.

4. REVISITING THEORY: THE ORIGIN OF THE EMPIRICAL CORRELATIONS

Young stars -from brown dwarfs to massive Herbig Ae/Be stars- show a correlation between L_{acc} and the stellar luminosity ($L_{l\star}$) (Fig. left). We have recently shown [10] that all near-UV/optical/infrared (IR) L_{acc}-L_{line} correlations result from the fact that L_{acc} and $L_{l\star}$ correlate. Observational and synthetic data using artificial lines (Fig. Right) illustrate that the shape of the L_{acc}-L_{line} correlations is determined by the L_{acc}-$L_{l\star}$ correlation shown by the sample under analysis. Because PMS stars show the L_{acc}-$L_{l\star}$ correlation implies that L_{acc} also correlates with the luminosity of all spectral lines. Therefore, the L_{acc}-L_{line} correlations alone do not prove any physical connection between the spectral lines and accretion. When looking for correlations with possible physical meaning, L_{acc}-$L_{l\star}$ and L_{acc}-L_{line} should be used instead of L_{acc} and L_{line}.

References:

[10] Mendigutía et al. 2015, 452, 2837